Сравнение ракетных двигателей Merlin, Raptor, BE-4, РД-180, RS-25 и F-1
В прошлом месяце на ресурсе Everyday Astronaut вышел чрезвычайно полезный и содержательный обзор современных и находящихся в разработке ракетных двигателей. Русский перевод статьи на днях опубликовал Alpha Centauri. Героями публикации стали следующие модели:
- Merlin (SpaceX, США) — используется в ракетах семейства Falcon: 1 шт. на первой ступени Falcon 1, 9 шт. на первой ступени и 1 шт. на второй ступени Falcon 9, 27 шт. на первой ступени (по 9 шт. на каждом из трех ускорителей) и 1 шт. на второй ступени Falcon Heavy
- Raptor (SpaceX, США) — проходит испытания, предназначен для сверхтяжелой ракеты BFR (31 шт. на первой ступени и 7 шт. на второй ступени)
- BE-4 (Blue Origin, США) — проходит испытания, предназначен в частности для тяжелой ракеты New Glenn
- РД-180 (НПО Энергомаш, РФ) — двухкомпонентный двигатель, используется в первых ступенях американских ракет Atlas III и Atlas V (1 шт.)
- RS-25 (Aerojet Rocketdyne, США) — использовался в многоразовом орбитальном ракетоплане космического челнока Space Shuttle (3 шт.), также планируется к использованию в первой ступени (4 шт.) сверхтяжелой ракеты SLS
- F-1 (Aerojet Rocketdyne, США) — использовался в первой ступени (5 шт.) свертяжелой (на сегодня — самой тяжелой из когда-либо созданных) ракеты Saturn V, на которой 50 лет назад был выполнен первый в истории пилотируемый полет с посадкой на Луну.
Прежде чем начать с описания характеристик всех шести двигателей, давайте вкратце рассмотрим основные их параметры:
Цикл. Он бывает открытым или закрытым. В открытом часть топлива используется для приведения в действие турбо-насосного агрегата (вращения турбины, подающей топливо из бака в двигатель), после чего отработанная струя газа отводится наружу и теряется.
В закрытом цикле эта струя из газогенератора турбо-насосного агрегата подается в камеру сгорания, пройдя предварительное окисление кислородом для полного выгорания, и таким образом увеличивает тягу. Эту чрезвычайно сложную технологию впервые разработали и использовали в СССР, в двигателе НК-15, созданном для сверхтяжелой ракеты Н-1 (все четыре её испытания закончились неудачей, проект был закрыт). Аналогичная схема применяется в РД-180, который великолепным назвал даже Илон Маск.
В США эту схему применили в двигателе, где вместо керосина использовался жидкий водород — RS-25 орбитального ракетоплана Space Shuttle (Aerojet Rocketdyne). Его советским аналогом стал РД-0120, созданный для второй ступени ракеты-носителя Энергия. В двигателе замкнутого цикла вместо одного общего газогенератора установлены два — отдельно для водородного и кислородного насосов (поскольку жидкий водород является намного менее плотным, чем керосин и жидкий кислород). Во избежание утечек взрывоопасного водорода инженеры Aerojet Rocketdyne задействовали специальные прокладки, находившиеся под давлением безопасного в этом отношении гелия.
Недостатком RS-25 было то, что кислород в нем газифицировался частично — остальная часть в смесительную головку камеры поступала в жидком виде. Полная газификация задумывалась только в трех двигателях:
- РД-270 (СССР), разработка и испытания которого были приостановлены после сворачивания проекта по созданию сверхтяжелой ракеты УР-700
- «Интегрированном демонстраторе силовой насадки» (США), разработка которого также была прекращена
- Raptor компании SpaceX.
Таким образом, в случае удачи Raptor станет первым в истории серийным ракетным двигателем закрытого цикла с полной газификацией. Согласно Википедии, «при использовании данной схемы турбины могут иметь мéньшую рабочую температуру, так как через них проходит бóльшая масса, что должно привести к более продолжительному функционированию двигателя и его бóльшей надёжности». Как вы понимаете, для многоразовых ракет SpaceX это преимущество является ключевым.
Топливо. Рассматриваемые в статье ракетные двигатели используют один из следующих видов топлива: керосин, жидкий метан (природный газ) или жидкий водород. Ключевыми характеристиками топлива являются:
- Плотность, измеряемая в граммах на литр. Чем она больше, тем больше топлива вместит топливный бак.
- Соотношение масс сжигаемого горючего и окислителя (в качестве которого выступает жидкий кислород) — стехиометрический коэффициент. Сочетание плотности топлива со стехиометрическим коэффициентом определяет:
- Количество литров топлива, требуемого на один литр окислителя. В свою очередь этот показатель определяет пропорцию объемов баков для топлива и жидкого кислорода.
- Удельная тяга. Чем она больше, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Выражаясь в секундах, удельная тяга показывает сколько времени двигатель может создавать тягу в 1 Н (Ньютон — сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы), истратив при этом 1 кг топлива. Соответственно, чем удельная тяга больше, тем лучше.
- Температура кипения — определяет температуру, при которой топливо из жидкого состояния переходит в газообразное. Чем она ниже, тем сложнее и дороже хранить данное топливо.
- Температура горения — напротив, чем она ниже, тем лучше, поскольку меньше изнашивается двигатель (что опять же критично для многоразовых ракет).
В таблице снизу представлены все перечисленные выше характеристики:
Керосин (RP-1) | Жидкий метан | Жидкий водород | |
Плотность | 813 г/л | 422 г/л | 70 г/л |
Стехиометрический коэффициент | 2.7 | 3.7 | 6 |
Кол-во топлива на 1 л окислителя | 0.52 | 0.73 | 2.72 |
Удельная тяга | 370 сек | 459 сек | 532 сек |
Температура кипения | 490 К | 111 К | 20 К |
Температура горения | 3,670 К | 3,550 К | 3,070 К |
Как видим, в целом керосин в качестве топлива представляется более предпочтительным, за исключением таких параметров как удельная тяга и температура горения — здесь лидирует водород и занимает промежуточное положение метан. Почему же, в таком случае, некоторые производители ракет керосину предпочли метан или водород? Ответ кроется в миссиях, для которых эти ракеты, с заделом на будущее, предназначены — метан с водородом можно производить на Марсе. И соответственно не брать с собой топливо на обратную дорогу.
Теперь давайте рассмотрим характеристики самих ракетных двигателей:
Merlin | Raptor | BE-4 | РД-180 | RS-25 | F-1 | |
Производитель | SpaceX (США) | SpaceX (США) | Blue Origin (США) | НПО Энергомаш (РФ) | Aerojet Rocketdyne (США) | Aerojet Rocketdyne (США) |
Ракета-носитель | Falcon 9 (9 + 1) Falcon Heavy (27 + 1) | BFR (31 + 7) | New Glenn (7) | Atlas III (1) Atlas V (1) | ракетоплан Space Shuttle (3) SLS (4) | Saturn V (5) |
Первый рабочий полет | 2010 | 2021 | 2021-2022 | 2000 2002 | 1982 2020 | 1968 |
Цикл | Открытый | Закрытый (полная газификация) | Закрытый (частичная газификация) | Закрытый (частичная газификация) | Закрытый (частичная газификация) | Открытый |
Топливо | Керосин | Метан | Метан | Керосин | Водород | Керосин |
Давление в камере | 97 бар | 270 бар | 135 бар | 257 бар | 206 бар | 70 бар |
Тяга | 0.84 мН | 2.00 мН | 2.40 мН | 3.83 мН | 1.86 мН | 6.77 мН |
Тяговооруженность | 198:1 | 107:1 | 80:1 | 78:1 | 73:1 | 94:1 |
Удельная тяга | 282 сек 311 сек | 330 сек 350 сек | 310 сек 340 сек | 311 сек 338 сек | 366 сек 452 сек | 263 сек 304 сек |
Здесь следует сразу оговорить, что приведенные в таблице характеристики не являются рекордными — например, у 4-камерного советского двигателя РД-170, разработанного для ракеты-носителя «Энергия», тяга была на несколько процентов больше, чем у F-1 — при том, что последний был крупнее и расходовал больше топлива.
Что касается эффективности, то её обычно оценивают по тяговооруженности (отношению тяги двигателя к его весу) и, в большей степени, удельной тяге. Напомню, что она показывает сколько секунд двигатель сможет создавать тягу в 1 Ньютон, истратив при этом 1 кг топлива. В таблице удельная тяга приводится в двух значениях, на уровне моря и в вакууме. В нашей таблице по тяговооруженности с большим отрывом от всех остальных двигателей лидирует Merlin, а по удельной тяге — RS-25.
Но пожалуй главный интерес представляет цена вопроса — сколько же стоят все эти двигатели? Если сведения Everyday Astronaut более-менее достоверны, то картина складывается такая:
Merlin | Raptor | BE-4 | РД-180 | RS-25 | F-1 | |
Цена одного двигателя | < $1 млн | ~$2 млн | ~$2 млн | $25 млн | > $50 млн | $30 млн |
Ракета-носитель | Falcon Heavy | BFR | New Glenn | Atlas V | SLS | Saturn V |
Кол-во двигателей у первой ступени | 27 | 31 | 7 | 1 | 4 | 5 |
Полная стоимость | $27 млн | $62 млн | $14 млн | $25 млн | $200 млн | $150 млн |
Цена на 1 кН (единицу тяги) | $1,170 | $1,000 | $3,333 | $6,527 | $26,881 | $4,431 |
Ресурс (кол-во запусков) | 10 | 50 | 25 | 1 | 19 | 1 |
Полная стоимость на один полет | $2.7 млн | $1.24 млн | $0.56 млн | $25 млн | $10.5 млн | $150 млн |
Полезная нагрузка (НОО) | 30 т (1) | 100 т | 45 т | 20 т | 95 т | 140 т |
Полная стоимость на 1 т | $90 тыс | $12.4 тыс | $12.4 тыс | $1.25 млн | $110.5 тыс | $1.07 млн |
(1) Как уже рассказывал Gadgets News, в многоразовой опции полезная нагрузка Falcon Heavy составляет не 63.8 т, а 30 т — требуется брать больше топлива для возврата трех бустеров первой ступени. В отношении остальных многоразовых ракет я исхожу из того, что заявленная по ним полезная нагрузка также относится к многоразовой опции.
Обратите внимание, что в стоимость доставки на НОО заложена цена только двигателей первой ступени. По этому критерию мы получаем любопытное совпадение между BFR и New Glenn — $12.4 тыс за одну тонну. Это примерно на один порядок дешевле Falcon Heavy и SLS, и на два порядка — Atlas V и Saturn V.
Как уже рассказывал Gadgets News, путем сравнения цены запуска Falcon Heavy в разных опциях получается, что центральный ускоритель первой ступени FH оценивается SpaceX в $5 млн, а боковые — по $27.5 млн каждый. Откуда взялась столь существенная разница между, казалось бы, примерно одинаковыми ускорителями, непонятно. Я подозреваю, что сведения о цене запуска FH с сохранением всех трех ускорителей ($90 млн) неверны — уверено можно говорить лишь о ценах запуска с потерей двух боковых и центрального ($150 млн), а также с сохранением двух боковых ($95 млн) ускорителей. Предполагая примерно одинаковую цену всех трех ускорителей, будем считать, что настоящая цена запуска FH с полным сохранением первой ступени составляет 95-(150-95)/2=$62.5 млн. Эта цена почти соответствует запуску Falcon 9 с сохранением первой ступени.
Правда, и в этом случае не вполне понятно почему вторая ступень FH стоит 150-30×3=$60 млн, а вторая ступень Falcon 9 — 60-30=$30 млн (для простоты все числа округлены). Разницу в $30 млн предварительно будем считать наценкой за сложность. В перспективе, вероятно, цены второй ступени FH и Falcon 9 сравняются на уровне $30 млн, что составляет $1 млн за тонну (напомню, что полезная нагрузка FH с возвратом первой ступени составляет 30 т). Исходя из ресурса первой ступени (три ускорителя по цене $30 млн каждый) в 10 запусков, полная цена доставки на НОО одной тонны полезного груза ракетой FH составит (30×3)/10/30 + 1 = $1.3 млн (в т.ч. $90 тыс — за износ двигателей). Для сравнения, отправка на НОО 63.8 т полезного груза с потерей первой ступени ($150 млн) стоит $2.3 млн.
Таким образом, будущее снижение стоимости запусков Falcon Heavy обещает стать существенным, но отнюдь не революционным. Другое дело — BFR, у которой многоразовыми являются обе ступени, и вдобавок заявленный ресурс составляет 50 запусков. Если сделать смелое допущение, что и у BFR на ракетные двигатели приходится около 1/3 цены, то полная стоимость этой сверхтяжелой ракеты составит (31+7)×2×3=$228 млн. С учетом дополнительных сложностей её изготовления округлим эту сумму до $250 млн. Соответственно каждый из 50 запусков будет стоить $5 млн, а стоимость доставки груза на НОО составит $50 тыс за тонну. И вот это на рынке орбитальных запусков действительно станет революцией — если, конечно, сбудутся обещания SpaceX.